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A state of permanent, isothermal non-wetting of a solid surface by a normally
wetting liquid may be achieved if the surface moves tangentially to a liquid drop
that is pressed against it. Surrounding gas is swept into the space between the liquid
and solid creating a lubricating film that prevents wetting. The length scales of the
drop and the film are typically three or more orders of magnitude different, making
numerical simulation difficult from a resolution standpoint. The present paper focuses
on a hybrid approach employing lubrication theory for the thinnest portions of the
gas film and numerical simulation for the liquid and outer gas phases.

1. Introduction
Reported observations of drops of a single liquid that bounce off one another

without coalescing or off solid surfaces without wetting date back at least as far as
those of Lord Rayleigh (1879), who discussed the “rebound of drops when they come
into collision with one another”. Temporary non-coalescence, such as observed by
Rayleigh with his colliding water jets, is important in phenomena such as raindrop
coalescence and droplet combustion.

Recently, the subject of permanent non-coalescence and non-wetting has become
of interest. In these cases, a lubricating film of gas is driven between the liquid–
liquid or liquid–solid surfaces, keeping them sufficiently far apart that attractive van
der Waals forces remain weak. So long as the lubricating gas film is supplied, the
surfaces remain separated, leading to the permanence of the event. A recent review
by Neitzel & Dell’Aversana (2002) discusses work done on both temporary and
permanent non-coalescence and non-wetting.

Two mechanisms have been identified thus far for providing the lubricating film
for the permanent cases. Thermocapillarity, coupled with a temperature difference
between the two surfaces in question, may be used to supply the lubricating gas. The
second mechanism, termed isothermal non-coalescence/non-wetting, drives the gas
film by one surface being in a state of motion tangential to the other, such as through
pressing a liquid drop against a rotating liquid bath or solid disk.

Apart from their intrinsic characteristics, interest in permanent non-coalescence and
non-wetting stems from the potential utility of such systems in practical applications
ranging from micro-electro-mechanical systems (MEMS) and lab-on-a-chip (LOC) to
microgravity systems for Space uses. This utility is realized, in part, by the fact that
these systems are able to carry loads in excess of drop weights and by the existence of
low friction between a non-wetting drop and surface, enabling enhanced liquid trans-
port from point to point on a surface. Dell’Aversana & Neitzel (2004) have measured
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loads for thermocapillary non-wetting drops pressed against cooled surfaces and have
shown that the load-carrying ability is due to the increase in capillary pressure within
the drop as it is squeezed against the unwetted surface. The successful application of
robust versions of such systems requires a detailed understanding not only of their
load-carrying capacities, but also of the conditions under which such systems are
likely to fail. Such knowledge can be gained by experiment, and by careful numerical
simulations of the flow fields within both the liquid drop and the lubricating gas film.

One difficulty in simulating the flow fields associated with non-coalescing and non-
wetting systems concerns the disparate length scales associated with flows within the
liquid and gas phases. Drops employed in experiments are typically of millimetre
size while the gas films, which may be measured with interferometry (Dell’Aversana,
Tontodonato & Carotenuto 1997), are three orders of magnitude smaller. If the
discretization level in a numerical model is maintained over these two regions, the
disparate length scales inflate the problem size in the thin region by a factor of one
thousand in a two-dimensional simulation and a factor of one million in a three-
dimensional simulation. Such large problems are very difficult to solve with current
computing hardware.

Previous simulations of the thermocapillary non-wetting problem employ simplistic
models of the film region, use assumptions regarding the drop that are not relevant to
proposed applications, or are unable to obtain solutions for realistic configurations.
For example, the numerical simulations of Monti & Savino (1997) and Savino &
Monti (1997) assumed a liquid free-surface shape determined by the static Young–
Laplace relation to compute thermocapillary flow within the drop; the surface speed
thusly obtained was used to compute the gas flow in an axisymmetric channel of
constant height, as opposed to the dimpled surface measured by Dell’Aversana et al.
Sumner, Wood & Neitzel (2003) performed a lubrication analysis of the flows in
both the liquid and gas phases, necessarily assuming a ‘flat’ drop instead of using a
shape more relevant to the experimental work, in which the initial shape is closer
to hemispherical. Chen, Kuo & Neitzel (2006) used the commercial code FIDAP
to compute liquid and gas flows associated with thermocapillary non-wetting of a
two-dimensional drop. They meshed the entire flow field, including the lubricating
gas film under the drop, but were unable to obtain solutions when the gas film was
extremely thin.

The present work addresses the isothermal non-wetting problem. If the drop holder
and the moving plate are held at the same temperature, the isothermal assumption is
valid provided that viscous heating in the gas film is small. A balance of heat diffusion
in the film to viscous heating produces the relation �T = µU 2/k, where �T is the
temperature difference across the film, µ and k are the dynamic viscosity and thermal
conductivity of the gas, and U is the speed of the plate. An experimental velocity of
46 cm s−1 (see figure 1) and standard properties for air yields �T = 0.15 mK. Thus,
the isothermal assumption is reasonable.

Neitzel & Dell’Aversana (2002) have shown that isothermal non-wetting is possible
for silicone-oil drops pressed against disks rotating with a local tangential speed
sufficient to supply the lubricating film. Because of the existence of a preferred flow
direction within the film, the axisymmetry observed in thermocapillary non-wetting
is not preserved. Rather, the flow within both the drop and film exhibit mid-plane
symmetry, as seen in the interferogram and reconstructed interface shape presented
in figure 1.

Although a two-phase lubrication analysis of the type performed by Sumner et al.
(2003) is also possible for this system, the present work will seek a solution that does
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Figure 1. (a) Interferogram and (b) reconstructed liquid-surface shape (dimensions in µm) for
an isothermal, non-wetting silicone-oil drop pressed against a rotating disk. Tangential speed
(right-to-left) of the disk is 46 cm s−1 Neitzel & Dell’Aversana (2002).

not require a flat drop through the use of a hybrid lubrication-theory/computational-
fluid-dynamics (CFD) approach. Kuo, Chen & Neitzel (2005) used their FIDAP
model to compute full CFD solutions for this case, but could not obtain solutions for
extremely thin lubricating films, just as in the thermocapillary non-wetting problem
discussed above.

There have been previous hybrid approaches to solving fluid-flow problems that
focused on the use of different techniques in different regions of the flow where
length scales change greatly. One such problem occurs during the process of forward
roll coating. Ruschak (1982) used lubrication theory for the one-dimensional flow
in the gap, matched to finite-element solutions of the two-dimensional Navier–
Stokes equations in the downstream region where the film splits, enabling the correct
computation of the film-splitting point. Hadjiconstantinou (1999) treated the moving
contact line by applying a molecular-hydrodynamics solution in a neighbourhood
of the line coupled with a continuum hydrodynamics approach away from this
location. The use of overlapping domains and the implementation of boundary
conditions through a variation of the domain-decomposition Schwarz alternating
method enabled hybrid solutions to be obtained. Stay & Barocas (2003) applied a
Galerkin finite-element technique to compute Stokes flow in the vicinity of a thin
region and coupled the results to a lubrication solution in the thin region. The
technique was illustrated with a deformable roll-coating geometry.

The hybrid method formulated in the present work uses a finite-element-based CFD
approach in regions of macroscopic length scale coupled to an asymptotic lubrication
analysis in the microscale region. A departure from earlier approaches relates to the
fact that the microscale region is bounded by two fluid phases in need of a solution,
namely the macroscopic-scale gas flow at the inlet and exit to the lubrication film and
the macroscopic liquid flow that is driven through the interfacial stress due to both
the moving gas in the film as well as that in the bulk regions.

The model problem considered is this work is an isothermal, two-dimensional liquid
drop attached to a solid planar surface and pressed against a lower moving solid
surface so that non-wetting is observed. For the three-dimensional case shown in
figure 1, the approaching gas is able to pass laterally around the drop as well as
beneath it within the lubrication region. For the two-dimensional case considered
here, lateral motion is impossible. Furthermore, one would expect that not all of the
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Figure 2. Schematic of the problem geometry.

approaching gas would be able to pass through the lubrication region, leading to a
blockage and a resulting flow ahead of the drop in a direction opposite to that of the
plate motion. Such two-dimensional isothermal non-wetting would be observed, for
example, in the interior region (i.e. away from the ends) of a ‘thread’ of fluid sliding
perpendicular to its long axis along a solid surface. Two-dimensional isothermal non-
wetting has not been demonstrated experimentally, but its thermocapillary counterpart
has (Nalevanko 1997).

The problem formulation and an outline of the solution procedure are given next
in § 2. Results are found in § 3 and the paper concludes with a discussion in § 4.

2. Problem formulation and solution procedure
2.1. Geometry and dimensionless parameters

Consider two parallel, solid, planar surfaces of infinite horizontal extent spaced a
distance d∗ apart, as sketched in figure 2. The upper surface is fixed and the lower
surface moves to the right at a speed U in its own plane. A two-dimensional liquid
drop is attached to the underside of the upper surface, pinned at points PL and
PR spaced a distance 2R apart. The drop is composed of an incompressible viscous
liquid with a volume per unit length (or area) A∗. An incompressible viscous gas
bounds the exposed portion of the drop and fills the rest of the space between the
two solid surfaces. In the present model, the two fluids are assumed to be isothermal.
A Cartesian coordinate system is used with the x-axis lying in the lower surface and
the y-axis passing through point PC , the mid-point of the line segment PLPR .

The motion of each fluid is governed by the Navier–Stokes and continuity equations,
in which gravity is ignored. The liquid–gas interface is a simple, deformable interface
with surface tension σ . Standard interfacial boundary conditions are used, i.e.
continuity of velocity and tangential stress, the kinematic constraint that the normal
interfacial velocity equals the normal fluid velocity, and a normal-stress difference
equal to the surface tension times interfacial curvature. For brevity, these equations
are not reproduced here.

The governing equations are scaled using length, velocity, pressure, and time scales
of R, U , ρU 2, and R/U , respectively. The primary dimensionless parameters that
result are the solid-surface separation distance d = d∗/R, drop area A= A∗/(πR2/2),
density ratio r = ρl/ρg , viscosity ratio m =µl/µg , Reynolds number Re = ρgUR/µg ,
and Weber number We = ρgU

2R/σ , where g and l subscripts refer to gas and liquid,
respectively.

In the present work, the only drop area considered is A= 1. Thus, if the two fluids
are motionless (with U = 0) and the solid-surface separation distance d > 1, the drop
does not touch the lower surface, it has a semicircular shape, and both contact angles
are 90◦.
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ρ (g cm−3) µ (g cm−1 s−1) σ (g s−2)

Silicone oil 0.91 0.0455 19.2
Air 0.00121 0.1528 × 10−3 —

Table 1. Material properties for silicone oil and air.

The fluid motion in this system is driven by the translation of the lower surface
and a pressure gradient applied in the x-direction. Far away from the drop in both
the positive and negative x-directions the flow is assumed to be a simple Couette–
Poiseuille parallel flow given in dimensionless form as

u =
K

2
(y2 − yd) + 1 − y

d
,

K = 6 (d − 2q)/d3.


 (2.1)

Here, K is the dimensionless pressure gradient in the flow scaled using the viscous
stress in the gas. The parameter q = q∗/(RU ) is the dimensionless volume flow rate
of the gas between the two solid surfaces. The two parameters q and K are not
independent. In this work, the flow rate q is chosen as the primary parameter
characterizing the flow far from the drop.

As now posed, this problem is characterized by seven independent parameters:
r , m, Re, We, A, d , and q . For a given liquid–gas combination r , m, and We/Re2

are determined. Setting the speed U of the lower surface then determines Re and
We. Thus, the goal of the present work is to find steady solutions for the flow in
the gas and the liquid and the shape of the drop as functions of the solid-surface
separation distance d , the flow rate of the gas q , and the Reynolds number Re.
The default parameter set used for all results reported in this work are for 4.55 cSt
silicone oil and air and a lower-surface translation speed of 30 cm s−1, corresponding
to the simulations of Kuo et al. (2005). The material properties are listed in table 1.
The dimensionless parameters are r =752.07, m = 297.77, We/Re2 = 0.10050 × 10−4,
Re =23.756, and We =0.56719 × 10−2.

The lubrication domain beneath the drop is indicated by the small hatched region
in figure 2. This is where the drop is closest to the lower surface and the lubricating
gas film flow is important. The hybrid numerical scheme developed to solve this
problem is composed of three separate parts: (i) a finite-element model used to solve
for the flow away from the lubrication domain, (ii) an asymptotic solution for the
gas flow in the lubrication domain; and (iii) a drop-shape computation based on the
normal-stress balance on the drop interface. The following subsections describe each
of these parts and their integration into the final hybrid model.

2.2. The finite-element model

The flow problem away from the lubrication domain is easily modelled using the
finite-element method, implemented with the software FEMLAB 3.1. One limitation
of FEMLAB 3.1 is that it does not handle deformable-interface problems. This was
overcome by writing a MATLAB function to iteratively compute the drop shape
based on the normal-stress jump on the liquid–gas interface obtained from a flow
computation for a given drop shape, as described later in § 2.4.

The flow domains for the FEMLAB model are shown in figure 2. A finite channel
of height d and width w is defined for the gas flow. The drop interface is defined by a
curve obtained from a cubic-spline interpolation of a set of uniformly spaced points
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along the drop circumference, including the contact lines at points PL and PR . The
flow domain does not include the hatched lubrication domain.

FEMLAB’s Incompressible Navier–Stokes, steady-state-analysis, application mode
is used to define separate sets of governing equations for each fluid phase, which
are coupled through the interfacial boundary conditions. Continuity of velocity is
satisfied by setting the velocity of the gas equal to the velocity of the liquid at the
drop interface. Continuity of tangential stress is enforced by using FEMLAB’s slip
boundary condition on the drop surface for the liquid. Thus, all of the appropriate
boundary conditions on the drop interface are satisfied, except for the normal-stress
balance; this condition is implicitly satisfied when the correct drop shape is found.

The remaining boundary conditions in the FEMLAB model are set as follows.
Kinematic and no-slip conditions are applied at the upper and lower solid surfaces.
On the left and right ends of the channel, a parallel flow is specified using equation
(2.1) for the horizontal velocity and setting the vertical velocity to zero. The pressure
levels in the gas domains on the left and right sides of the channel are specified by
setting the pressure on the drop interface at the left and right sides of the lubrication
domain to values obtained from the lubrication flow. Finally, the pressure level in the
drop is specified by setting the pressure at point PC on the upper surface to pdrop.
In the full deformable-interface problem, pdrop is an unknown and is determined as
part of the solution. However, the value of this unknown pressure does not affect the
finite-element model at this level because the normal-stress boundary condition is not
imposed at this time.

The fluid domains are meshed using triangular Lagrange quadratic elements with a
maximum element size limited to 0.1. On the drop boundary, the maximum element
size is limited to 0.02, while at the contact lines the element size is limited to 0.01.
Along the drop boundary, the element growth rate moving away from the boundary is
set to 1.03. For d > 1.02, a lubrication domain is not required and a typical simulation
(with d =1.02) has approximately 12 000 elements and 56 000 degrees of freedom. An
average computation of this size with an error tolerance of 10−6 takes approximately
38 s to complete on a 3 GHz Windows computer with 1 GB of memory.

Mesh convergence was checked for d = 1.02 and no lubrication domain by halving
the element size limit on all domains, boundaries, and points. The change in quantities
such as the x- and y-forces on the drop, the maximum velocity on the drop interface,
and the maximum and minimum pressures under the drop was less than 0.55%. This
was considered an acceptable accuracy and so the original mesh parameters given
above are used for the remainder of the results reported in this work.

The solid surfaces in the model problem are of infinite horizontal extent. In the
numerical model, these surfaces were necessarily limited to a finite channel of width
w. Simulations were done with channel widths of 6, 8, and 16 using the same mesh
parameters. The differences in the quantities mentioned above between channels with
widths of 8 and 16 were less than 0.02%, with only the maximum pressure under
the drop in error by 0.26%. For channel widths of 6 and 16, errors were less than
0.15%, with only the maximum pressure off by 0.55%. A channel width of w = 8 was
conservatively chosen so that end effects on the flow around the drop are negligible.

2.3. The lubrication model

The velocity field in the lubricating gas film is described using lubrication theory. The
lubrication domain is given by {(x, y)|xL � x � xR, 0 � y � h(x)}, where xL and xR are
the locations of the left and right boundaries respectively, and h(x) is the location
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of the drop interface. The interface is a non-deformable surface on which the gas
velocity is equal to the liquid velocity, just as in the FEMLAB model discussed above.

The leading-order lubrication equations for two-dimensional steady flow in the
lubrication domain are written in primitive dimensional variables with standard
notation as

−px + µguyy = 0, (2.2a)

−py = 0, (2.2b)

ux + vy = 0, (2.2c)

where x and y subscripts denote partial differentiation. The corresponding boundary
conditions are

u(y = 0) = U, u(y = h) = Ud, (2.3a, b)

p(x = 0) = 0, (2.3c)

v(y = 0) = 0, (2.3d)

v = Vd, v = uhx, on y = h. (2.3e, f )

Here, Ud and Vd in boundary conditions (2.3b, e) are the velocity components of
the liquid at the drop interface. These two conditions make the gas and liquid
velocity fields at the drop interface continuous. Note that the liquid velocity from the
FEMLAB model is tangential to the drop interface and so it satisfies the kinematic
condition. Thus, conditions (2.3b, e, f ) form a dependent set. Since only one boundary
condition is needed to find the vertical velocity, condition (2.3e) can be safely dropped.
The pressure level in the gas is defined by setting the pressure at the origin to zero in
condition (2.3c).

Equation (2.2b) shows that p = p(x). This result allows the integration of the
momentum equation (2.2a), which after applying boundary conditions (2.3a, b), yields
the horizontal velocity

u =
Kh2

2

(
y2

h2
− y

h

)
+ (Ud − U )

y

h
+ U, (2.4)

where K(x) ≡ px/µg .
From the continuity equation (2.2c) and the horizontal velocity (2.4), the vertical

velocity is determined to be

v = −Kxh
3

2

(
y3

3h3
− y2

2h2

)
+

Khxy
2

4
− (Ud)x y2

2h
+

(Ud − U ) hxy
2

2h2
. (2.5)

The pressure in the lubrication domain is obtained by integrating the continuity
equation (2.2c) with respect to y over the thickness of the gas film. Defining the

volume flow rate in the gas as q =
∫ h(x)

0
udy and using the kinematic condition (2.3f )

yields the condition qx = 0, which leads to the fact that q is constant. Integrating the
horizontal velocity over the film thickness gives an equation for the flow rate. Solving
this for K and using the definition K(x) ≡ px/µg produces the pressure gradient

px = µg

{
6 (Ud + U )

h2
− 12q

h3

}
. (2.6)

The pressure gradient is integrated numerically for a given shape of the drop interface
h(x) as described below.

The final quantity needed from the lubrication model is the shear stress of the gas
at the drop interface, defined to leading order as τ = µguy(h). Using the horizontal
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velocity (2.4) produces the result

τ = µg

{
Kh

2
+

(Ud − U )

h

}
. (2.7)

The analytical expressions for the velocity components and the shear stress on the
drop interface in the lubrication domain are combined with the FEMLAB model as
follows. In the FEMLAB geometry, the hatched lubrication domain shown in figure 2
is not meshed. In its place, the velocity components in the lubrication domain given
by equations (2.4) and (2.5) are used as velocity boundary conditions at x = xL and
x = xR . The shear stress from equation (2.7) is applied to all liquid elements that
border the lubrication domain using a weak formulation.

The lubrication pressure is coupled to the FEMLAB model by creating a one-
dimensional FEMLAB geometry equivalent to the line segment (xL, xR), which is
the lower boundary of the lubrication domain. FEMLAB’s PDE, Coefficient Form,
application mode is used in this geometry. The coefficients and boundary conditions
of the PDE are chosen to produce the following first-order ODE and boundary
condition:

dp

dx
= px, p(0) = 0. (2.8a, b)

Integration of system (2.8) yields the lubrication pressure. The pressure gradient
(2.6) defined in the first geometry is coupled to the second geometry and the pressure
from the second geometry is coupled to the first geometry on both the upper and
lower boundaries of the lubrication domain by defining FEMLAB extrusion coupling
variables. Lastly, the pressure in the gas on the drop interface at the left and right
boundaries of the lubrication domain is set equal to the lubrication pressure at these
same points.

The FEMLAB model of the flow outside the lubrication domain produces a small
variation in the gas pressure between the drop interface and the lower solid surface at
both ends of the lubrication domain. This difference is not resolved in a leading-order
lubrication theory since from equation (2.2b) the lubrication pressure is constant
across the thickness of the lubrication domain. Since the pressure coupling process
makes the pressure continuous along the drop interface, there are small pressure
discontinuities on the lower surface at both ends of the lubrication domain. These
discontinuities were removed by adding a small linear correction to the lubrication
pressure on the lower surface in the lubrication domain. As a result, the zero-pressure
reference point on the lower surface is slightly displaced from the origin. The true
zero-pressure reference point in the gas lies at the intersection of the drop interface
and the y-axis.

The coupling of the lubrication model and the finite-element model is completed by
locating the ends of the lubrication domain xL and xR at the points where the drop
interface slope is ∓15◦ from the horizontal, respectively. This slope value was chosen
by comparing the results from a FEMLAB computation without a lubrication model
to those with one and varying the location of the ends of the lubrication domain over
drop interface slopes from 2◦ to 30◦. The comparison uses parameters for silicone oil
and air from table 1, d = 1.02, q = 0.014, and Re = 23.756. The differences in the results
for the horizontal force on the drop and the effective pressure drop across the drop are
minimized at a slope angle of 15◦, being 2.4% and −0.8% respectively. Unfortunately,
the difference in the vertical force on the drop is maximized at this slope angle at a
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value of −13.3%. Despite this, these differences were deemed acceptable and a slope
angle of 15◦ was used in all subsequent computations reported in this work.

2.4. The drop-shape computation

The properties of the two-dimensional curve describing the drop interface are easily
characterized using an arc-length coordinate system as shown in figure 2. The arc-
length s along the curve is measured from the left-hand contact line at point PL.
Each point on the curve is given by a position vector R with respect to point PC .
Corresponding to each interfacial point is a Cartesian position (x, y), a slope θ

measured counterclockwise from the x-axis, and a curvature κ , defined as positive
when the slope increases with arc-length. As the position vector moves along the
interface, it sweeps out an area a. The position, slope, and curvature of the interface
and the swept area are functions of the arc-length only, determined by the following
system of four first-order ODEs:

dx

ds
= cos θ,

dy

ds
= sin θ,

dθ

ds
= κ,

da

ds
=

1

2
(x sin θ − (y − d) cos θ) .


 (2.9)

The six boundary conditions for the drop-shape equations are

x(0) = −1, x(s0) = 1,

y(0) = d, y(s0) = d,

a(0) = 0, a(s0) = πA/2,


 (2.10)

where s0 is the unknown arc-length at the right-hand contact line and A is the
dimensionless area of the drop defined in § 2.1. The remaining unknown in this set of
equations is the drop pressure pdrop, which appears in the dependence of the curvature
κ on the pressure and flow fields in the system, as described next.

The local curvature (and thus the drop shape) is determined from the normal-stress
balance on the liquid–gas interface. The dimensionless form of this equation is

κ = We (nsg − nsl + pdrop), (2.11)

where ns refers to normal stress, g and l subscripts refer to gas and liquid respectively,
and the drop pressure level pdrop has been explicitly separated from the remainder of
the normal stress in the liquid nsl . For d > 1, A= 1, and a motionless lower surface,
the static drop shape is a semicircle with a radius of one. From equation (2.11), the
constant curvature of the drop κ = 1, leads to pdrop =1/We, which in dimensional
form is σ/R, the capillary pressure.

When the speed of the lower surface is non-zero, the drop-shape computation is
done numerically. First, the flow field in the system is determined by solving the
finite-element/lubrication-theory model for a given drop shape. The normal stresses
on the drop interface in the gas and the liquid are extracted from these results to
form the right-hand side of equation (2.11). System (2.9), with forcing provided by
equation (2.11), is then solved as an initial-value problem with the MATLAB function
ode45 using the three initial conditions of (2.10), an initial guess for the slope,

θ(0) = θ0, (2.12)

and an error tolerance of 10−6. The equations are integrated to y = d . Two nested
iteration loops are used to determine the values of θ0 (outer iteration) and pdrop
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(inner iteration) necessary to obtain the correct right-hand contact-line position and
drop area, respectively, to an error tolerance of 10−5. At the end of this process, a
new drop shape satisfying all six boundary conditions (2.10) is known along with a
corresponding new value for the drop pressure level.

2.5. FEMLUB

The numerical solution of the full deformable interface problem sketched in figure 2
is performed using a MATLAB program called FEMLUB in which the finite-
element/lubrication-theory flow model and the drop-shape computation are executed
in a simple iteration loop. The loop calls two interior MATLAB functions. The inputs
to the first function are the problem parameters, the (x, y)-coordinates of a guess for
the drop shape, and a guess for the drop pressure level. This function sets up the
geometry of the system for the given drop shape, formulates the coupled flow models
described in § 2.2 and § 2.3, and solves for the entire flow field using FEMLAB. It
returns the normal-stress jump at the drop interface given by equation (2.11). The
second function uses the normal-stress jump as an input and returns the new drop
shape and drop pressure level as described in § 2.4. The iteration loop is terminated
when the maximum displacement over all points describing the drop shape and the
relative change in the drop pressure level are less than 2 × 10−4.

When the surface separation distance d is too close to one, convergence problems
appear in the FEMLUB iteration loop as a result of the drop-shape computation.
Given a reasonable drop shape, FEMLAB easily computes the flow field from the
finite-element/lubrication-theory model for any surface separation distance. However,
in some parameter ranges and when d < 1.02, the new drop shape computed from
the normal-stress jump would either intersect the lower surface or fail to intersect the
upper surface. In other parameter ranges, the drop-shape computation was successful
but as the iteration proceeded the drop interface would oscillate between two different
shapes. These difficulties occur when the drop is very close to the lower surface because
both the global flow field and the drop shape become very sensitive to the gas flow in
the lubrication domain beneath the drop. The lubrication pressure becomes so large
that a small change in the film thickness for a fixed flow rate causes a large change
in the lubrication pressure. It is these large pressure changes that cause the failure
of the normal-stress integration for the drop shape and/or drop-shape oscillations
during the iteration process.

Two modifications to the iteration procedure are used to address these problems.
The first is to change the flow rate in the channel from a constant value to one linearly
dependent on the minimum thickness in the lubrication domain hmin, i.e. q = khmin;
this corrects most of the oscillation problems. The second modification is to add two
layers of relaxation to the iteration loop. First, the absolute and relative changes in
the normal-stress jump anywhere on the drop interface are not allowed to exceed
0.05 or 5%, respectively. Second, changes in the positions of the points defining the
drop interface geometry and the pressure pdrop in the drop are relaxed in the normal
fashion, i.e. xi+1 = xi + β(xi+1 − xi) for some variable x. The relaxation parameter β

is set to a value of 0.25 when the normal-stress jump is relaxed and to a value of
0.5 when the changes in the normal stress are so small that relaxation of the jump
is not needed. For separation distances d < 1, the relaxation parameters are 0.01 for
the normal-stress change and 0.05 for the shape change. Note that these values for
the relaxation parameters may not be optimal and that both forms of relaxation are
needed to ensure successful iterations when the separation distance is less than one.
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Figure 3. The flow field for a silicone-oil drop and air with d = 1.01, Re= 23.756, and
q = 0.00860. (a) Streamlines from the FEMLUB model, (b) streamlines with an estimated flow
rate q =0.0085 ± 0.0003 from the FIDAP model by Kuo et al. (2005), and (c) pressure along
the lower surface from the FEMLUB model.

3. Results
In the following results, the drop is silicone oil with a dimensionless area A= 1

and the gas flowing past the drop is air. The primary parameters for investigation are
the separation distance d , the Reynolds number Re, and the flow rate q . Figure 3(a)
shows the streamlines for the flow when d = 1.01, Re = 23.756, and q = 0.00860. Away
from the drop at each end of the channel the flow is parallel with a Couette–Poiseuille
velocity profile and a constant pressure gradient. Most of the gas entering the channel
on the left side moves along the bottom surface, turns around near the drop, and exits
the channel on the left side along the top surface. On the right side of the channel,
gas enters along the top surface, turns around near the drop, and exits along the
bottom surface. The maximum velocity in the gas for this flow rate is always at the
lower moving surface, a dimensionless value of u =1. The flow in the liquid has a
very small magnitude because of the large liquid/gas viscosity ratio. A strong primary
counter-clockwise vortex occurs near the centreline of the drop, driven by the shear
stress from the gas in the lubrication domain beneath the drop. Two weaker clockwise
vortices exist on either side of the primary vortex and are driven partly by the shear
stress of the gas as it flows alongside the drop. The left vortex is larger and stronger
than the right one because the gas is being forced under the drop by the moving
plate on the left side. The maximum velocity in the liquid occurs at the drop interface
in the primary vortex. For comparison, the local extrema of the tangential velocity
Vs on the drop interface are Vs = 0.0419 for the primary vortex, Vs = − 0.26 × 10−2

for the left vortex, and Vs = − 0.60 × 10−3 for the right vortex. Note that the drop is
pushed slightly to the right so that the left contact angle is θL = 87.7◦.

Streamlines for the flow field from the FIDAP model by Kuo et al. (2005) are shown
in figure 3(b). Their computation had the same spacing d = 1.01 and Re = 23.756 (a
lower surface speed of U = 300 mm s−1). A flow rate estimate from Kuo et al.’s results
is q = 0.0085 ± 0.0003, while the FEMLUB model has q = 0.00860. The flow fields
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Figure 4. (a, b) Streamlines of the flow field from the FEMLUB model using a silicone-oil
drop and air with d = 1.01, Re= 23.756, and two different flow rates. (c) The pressure versus
x along the drop interface for four different flow rates.

are very similar (note that the streamline contour values are not the same). Kuo
et al.’s maximum tangential speed on the drop interface is Vs =0.0387 occurring
at x = 0.06, while the FEMLUB model has Vs = 0.0419 occurring at x = 0.069, an
8.3% velocity difference. Kuo et al. reported that the two zero-velocity points on
the interface occurred at x = − 0.35 and 0.60, while the FEMLUB model shows
x = − 0.40 and 0.75. Finally, the minimum film thickness estimated from Kuo et al.’s
results is hmin = 0.012 at x = 0.05, while it is hmin = 0.0122 at x = 0.073 in the present
results. Overall, the results from the two models agree quite well.

Figure 3(c) shows the pressure along the lower surface of the channel. This
curve displays the characteristic maximum and minimum structure found in similar
lubrication problems, such as forward-roll coating (see Smith 1997). The pressure
increases rapidly as the moving lower surface drags gas into the space beneath the
drop. Just to the left of the point of minimum film thickness the pressure peaks and
then drops rapidly. As the film thickness increases, the pressure reaches a minimum
and then rises again. Away from the influence of the drop, the pressure gradients at
each end of the channel are constant and equal. If these gradients are extrapolated to
intersect the y-axis at the centre of the channel (see figure 3c), the distance between
the top and bottom intersection points defines an effective pressure drop �peff for the
flow past the drop as follows:

�peff = pL − pR + wpx, (3.1)

where pL and pR are the pressures at each end of the channel, w is the channel width,
and px is the constant pressure gradient at each end of the channel. Likewise, the
horizontal distance between the constant-pressure-gradient lines as they intersect any
horizontal line defines an effective channel width weff, which is given by the relation

weff = �peff/px = w + (pL − pR)/px. (3.2)

The effective width is useful because it defines a finite two-dimensional channel/drop
system centred at the origin with a Couette–Poiseuille flow and the same pressure
at each end. The effective pressure drop and width for the flow in figure 3(a) are
�peff =13.50 and weff =55.42.

Figures 4(a) and 4(b) show the streamlines for flows with d = 1.01, Re = 23.756, and
q = 0.00994 and q = 0.00648, respectively. These figures show that the drop is pushed
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to the right for larger values of the flow rate and to the left for smaller values. The
reason for this behaviour lies in the net force on the drop. The dominant source of
the horizontal shear force on the drop is the moving lower surface. As it drags gas
to the right and under the drop by viscous stresses, it creates a positive (rightward)
shear force on the drop. For a system with no top solid surface, in which the drop is
lowered toward the moving solid surface, this viscous shear force in the lubrication
domain is the dominant force on the drop. Such is the case in the experiments of
Neitzel & Dell’Aversana (2002). However, in this channel system with a fixed upper
solid surface, the pressure force on the drop interface is the dominant horizontal
force. The horizontal viscous shear force is on the order of 4% of the pressure force
when d = 1.01. Figure 4(c) shows gas pressure distributions along the drop interface
for four different values of the flow rate, two of which are for the cases depicted in
figures 4(a) and 4(b). For ease of comparison, the location of the zero-point reference
pressure for all of these pressure distributions is shifted to the left end of the channel,
i.e. p(x = −4) = 0. For both left- and right-leaning drops, the pressure rises sharply
as the gas approaches the drop from the left side, there is a pressure maximum
followed by a large pressure drop to a minimum in the lubrication zone, and finally
the pressure rises as the gas moves away from the drop on the right-hand side. For
larger values of the flow rate (figure 4(c), q =0.00994), the pressure on the right side
of the drop is lower than that on the left. Thus, the drop leans to the right since both
pressure and viscous shear forces act in the same direction. For smaller values of the
flow rate (figure 4(c), q = 0.00648), the pressure rise on the right-hand side of the
drop is larger and the pressure on the right exceeds the pressure on the left. When
this negative pressure force exceeds that of the viscous shear force, the drop leans to
the left, in the direction opposing the motion of the lower surface.

For another explanation of this effect, consider the positive pressure gradient that
exists within the gas far enough away from the drop and on both sides of the channel.
This pressure gradient drives the required flow to the left along the upper wall and
regulates the flow rate. If the pressure at the left end of the channel is set to zero, then
to decrease the flow rate the pressure at the right end must increase. This pressure
increase translates directly to the pressure rise on the right side of the drop seen in
figure 4(c) for decreasing flow rates.

The net horizontal and vertical forces on the drop are plotted in figure 5 as a
function of the flow rate for a fixed Reynolds number, and as a function of the
Reynolds number for a fixed flow rate. For q � 0.00860, the drop leans to the right,
while for q � 0.00748, the drop leans to the left. Also note that the vertical force on a
right-leaning drop is downward. This force is dominated by the large suction pressure
on the right side of the lubrication domain. The vertical force on a left-leaning drop is
upward (except when the flow rate is near the value q = 0.00748), and it is dominated
by the large positive pressure on the left side of the lubrication domain.

The most interesting feature of figure 5(a) is that no solutions were found in the
interval 0.00748< q < 0.00860. Recall that with the flow rate fixed, the drop-shape
iteration history showed time-like oscillations in the drop shape. This prompted the
use of the relation q = khmin to compute the flow rate and fixing the value of the
parameter k during the iteration. If the horizontal drop force in figure 5(a) is re-
plotted versus the parameter k, the left and right portions of the curve become the
lower and upper parts of a typical S-shaped hysteresis curve. The upper turning point
corresponds to the flow rate q = 0.00860 and the lower turning point corresponds
to the flow rate q = 0.00748. It seems that the flow-rate interval between these two
values corresponds to the unstable branch connecting the two turning points. Thus,
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Figure 5. The horizontal and vertical force on the drop from the FEMLUB model using a
silicone-oil drop and air with d = 1.01. (a) Re= 23.756, and (b) q = 0.00700. The grey band
denotes the interval 0.00748<q < 0.00860 where no steady solutions are found.
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Figure 6. The effective pressure drop for the flow past the drop from the FEMLUB model
using a silicone-oil drop and air with d = 1.01. (a) Re= 23.756, and (b) q = 0.00700. The grey
band denotes the interval 0.00748<q < 0.00860 where no steady solutions are found.

for these flow rates one might expect to find unstable transient solutions in which the
drop exhibits a side-to-side oscillation.

Figure 5(b) shows the dependence of the drop forces on the Reynolds number for
a fixed flow rate q = 0.00700. For small values of the Reynolds number, the drop
leans to the right and the vertical force is downward. The horizontal force is negative
and the drop leans to the left for Reynolds numbers Re > 8. The vertical force
becomes positive for Reynolds number Re > 16. Note that increasing the Reynolds
number is equivalent to increasing the speed of the lower surface. Thus, increasing
the lower-surface speed to the right leads to a shift in the position of the drop to the
left.

Figure 6(a) shows the effective pressure drop �peff in the channel as a function of
the flow rate. As expected, this pressure drop increases with increasing flow rate. It is
usually positive (negative) when the drop leans to the right (left). Figure 6(b) shows
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Figure 7. The minimum film thickness under the drop from the FEMLUB model using a
silicone-oil drop and air with d =1.01. (a) Re= 23.756, and (b) q = 0.00700. The grey band
denotes the interval 0.00748<q < 0.00860 where no steady solutions are found.

Figure 8. The streamlines for the flow field from the FEMLUB model using a silicone-oil
drop and air with d = 0.93, Re= 23.756, and q =0.00256. This is not a converged steady
solution.

that increasing the Reynolds number for a fixed flow rate decreases the effective
pressure drop. An increased Reynolds number implies an increase in the speed of
the lower surface, which acts to assist the transport of gas underneath the drop. The
effective pressure drop is a measure of the pressure force across the drop required to
force the gas under and past the drop. It is much easier to flow beneath the drop when
the lower surface is moving faster and assisting in the transport. Thus, the effective
pressure drop decreases with increasing Reynolds number.

The minimum film thickness under the drop is shown in figure 7. It increases with
increasing flow rate and Reynolds number, although the increase is much larger with
the flow rate for this range of parameters.

The FEMLUB model also works well when the surface-separation distance d < 1.
Unfortunately, for this two-dimensional channel system no steady solutions were
found when d < 1 for either left- or right-leaning drops. The iteration history for every
parameter set examined exhibits under-relaxed monotonic or oscillatory changes in
the drop shape, most of which eventually lead to the drop interface intersecting the
lower surface. This kind of behaviour indicates that a steady drop shape is probably
unstable when d < 1 and that the drop will eventually wet the lower solid surface.
These unsteady solutions are beyond the scope of the present model.

Figure 8 shows the streamlines for the flow past the drop for d = 0.93 and
Re = 23.756 at one point in its oscillatory iteration history. This is not a converged
solution. The figure is only intended to show that the FEMLUB model does compute
the flow field and the drop shape for these severely squeezed drops. The horizontal
and vertical forces on the drop and the effective pressure are Fx = −121.9, Fy = 190.9,
and �peff = −139.4. All of these values are about an order of magnitude larger than
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those for a drop with d = 1.01 and the same Reynolds number (see figures 5 and 6).
This result gives some indication of how the forces in the flow increase as the drop is
squeezed toward the lower surface. The minimum film thickness for this iteration is
hmin = 0.00479. For a 1mm drop, this gives a minimum film thickness of about 5 µm,
which is a typical value seen in the experiments of Dell’Aversana & Neitzel (2004).

4. Conclusions
Isothermal non-wetting of a liquid drop attached to a fixed solid surface and

pressed against a second parallel solid surface moving in its own plane has
been demonstrated numerically in a two-dimensional setting. FEMLUB, a hybrid
finite-element/lubrication-theory model constructed with the FEMLAB finite-element
software, solved the complete deformable interface problem for the gas flow in the
channel, the flow in the liquid drop, and the shape of the drop. The effects of the
surface separation distance, the Reynolds number, and the flow rate of the gas in the
channel were examined in some detail.

The system displays several interesting behaviours. When the drop is close enough
to the lower moving surface (d � 1.01) there is a range of flow rates for which no
steady solutions are possible. For smaller (larger) flow rates, the drop leans to the
left (right). The effective pressure drop is a measure of the pressure force on the
drop required to drive the gas flow in the lubrication film underneath the drop. It
increases with increasing flow rate and decreases with increasing Reynolds number.
For a small enough Reynolds number, the drop leans to the right. Increasing the
Reynolds number causes the drop to lean to the left, opposite to the direction of
the moving lower surface. As a rule of thumb, right (left)-leaning drops experience a
downward (upward) vertical force. The minimum film thickness underneath the drop
increases with increasing flow rate and Reynolds number.

When the two solid surfaces are closer together than the radius of the undisturbed
drop, no steady drop-shape solutions were found. However, a typical unconverged
drop shape solution for the flow field shows that the magnitudes of the forces and
effective pressure drop are about an order of magnitude larger than when d =1.01.
Lastly, the minimum film thickness decreases from 0.01042 for d =1.01 to 0.00479
for d = 0.93.

The future direction for this work is to extend the hybrid technique to three
dimensions. The primary three-dimensional effect is to allow the gas to flow around
the drop. This would minimize the large suction pressure beneath the drop and
probably result in an upward vertical force on the drop for all conditions, as seen in
experiments. It is also possible that this extension would allow steady drop shapes
to be found when the surface separation distance is less than the radius of the
undisturbed drop.

G. P. Neitzel gratefully acknowledges support of this work by the NASA Office of
Biological and Physical Research.
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